Boaz Barak and David Steurer
UCSD winter school on Sum-of-Squares, January 2017
Graph \(G\) s.t. \(\max f_g \leq s\) but \(\exists\) \(d\)-pdist \(\mu\) s.t. \({\tilde{\mathbb{E}}}_\mu f_G \geq c\).
(Bigger \(d\), larger \(c\), smaller \(s\) make gap stronger)
\(NP\)-hardness of approximation \(\Rightarrow^*\) integrality gap.
Can we obtain the reverse implication?
A priori unlikely: What if sos is not the best algorithm?
Thm: If Khot’s Unique Games Conjecture (UGC) is true then can translate any integrality gap (even for degree \(2\)) to corresponding hardness of approximation.
Moreover, generalizes for every constraint satisfaction problem.
(Khot-Kindler-Mossell-O’Donnell, Mossell-O’Donnell-Oleszkiewicz, Raghavendra)
Thm: If there is a \(1-\epsilon\) vs. \(1-\delta\) gap for Max Cut, then can reduce unique games problem to distinguish given \(G\) between (i) \(\max f_G \leq 1-\epsilon+o(1)\) and (ii) \(\max f_G \geq 1-\delta-o(1)\).
Proof idea: (Generalizes to any CSP (Raghavendra ’08))
\(2LIN(k)\) Problem: Given set \({\mathcal{E}}\) of equations of form \(x_i + x_j = a_{i,j} (\mod k)\), compute \({\mathop{\mathrm{val}}}({\mathcal{E}}) = \max_{x\in({\mathbb{Z}}_k)^n} \color{red}{\text{ frac. of eqs satisfied by $x$ }}\)
\(UG(\epsilon)\) Problem: Distinguish between \({\mathop{\mathrm{val}}}({\mathcal{E}}) \geq 1-\epsilon\) and \({\mathop{\mathrm{val}}}({\mathcal{E}}) \leq \exp(1/\epsilon)\) where \({\mathcal{E}}\) is \(2LIN(k=\exp(1/\epsilon^2))\) instance.
KKMO: Reduce \(UG(\epsilon)\) to \(0.878 + {\mathop{\mathrm{poly}}}(\epsilon)\) Max Cut approx.
❤ of reduction: An encoding \(E:{\mathbb{Z}}_k\rightarrow{\{0,1\}}^{2^k}\) and graph \(\tilde{G}\) on \(2^k\) vertices satisfying:
Completeness: \(\forall x\in{\mathbb{Z}}_k\), \(E(x)\) is cut of value \(\alpha\) in \(\tilde{G}\).
Soundness: For every \(y\in{\{0,1\}}^{2^k}\), if \(y\) cuts \(\gt0.878\alpha+\epsilon\) edges, \(y\) is “correlated” with \(E(x)\).
\(G=([n],E)\) s.t.
\(\max f_G \leq 1 -\epsilon\) but \({\tilde{\mathbb{E}}}_\mu f_G \geq 1-\delta\)
\(\Rightarrow\)
\((X,Y)\) over \({\mathbb{R}}^{2d}\) s.t. \({\mathbb{E}}X_iY_i \geq 1-\delta\) but \({\mathbb{E}}[\Psi(X)\Psi(Y)] \leq 1-\epsilon\) \(\forall \Psi:{\mathbb{R}}^d\rightarrow {\{0,1\}}\).
Graph \(\tilde{G}=({\{0,1\}}^d,\tilde{E})\) s.t. \(\max f_{\tilde{G}} \geq 1-\delta\) max cuts are \(\Psi_i(x)=x_i\) (\(i=1..n\)).
\(\Leftarrow\)
\((X,Y)\) over \({\{0,1\}}^{2d}\) s.t.
\({\mathbb{E}}X_iY_i \geq 1-\delta\)
Soundness of gadget: If \({\mathbb{E}}_{\{x,y\}\in \tilde{E}} (\Psi(x)-\Psi(y))^2 \geq 1 - \epsilon + \Omega(1)\) then \(\Psi \approx \Psi_i\) in sense of having influential coordinate.
Central Limit Theorem: If \(\Psi:{\mathbb{R}}^d\rightarrow{\mathbb{R}}\) is a linear function with \(\Psi_i^2 \ll {\| \Psi \|}^2\) for all \(i\) then
\[ \Psi(X_1,\ldots,X_d) \approx \Psi(B_1,\ldots,B_d) \]where the \(X_i\)’s are i.i.d Gaussians in \(N(1/2,1/4)\) and the \(B_i\) are i.i.d Bernoullis in \({\{0,1\}}\).
Invariance Principle: If \(\Psi:{\mathbb{R}}^d\rightarrow{\mathbb{R}}\) is a constant degree polynomial with \(\Psi_i^2 \ll {\| \Psi \|}^2\) for all \(i\) then
\[ \Psi(X_1,\ldots,X_d) \approx \Psi(B_1,\ldots,B_d) \]where the \(X_i\)’s are i.i.d Gaussians in \(N(1/2,1/4)\) and the \(B_i\) are i.i.d Bernoullis in \({\{0,1\}}\).
\(\Psi_i^2 := {\mathbb{E}}_{X_1\ddots X_{i-1}X_{i+1}\ddots X_d} Var_{X_i} \Psi(X_1,\ldots,X_d)\)
Can drop degree assumption by “noising up” \(\Psi\).
Invariance Principle: If \(\Psi:{\mathbb{R}}^d\rightarrow{\mathbb{R}}\) is a constant degree polynomial with \(\Psi_i^2 \ll {\| \Psi \|}^2\) for all \(i\) then
\[ \Psi(X_1,\ldots,X_d) \approx \Psi(B_1,\ldots,B_d) \]where the \(X_i\)’s are i.i.d Gaussians in \(N(1/2,1/4)\) and the \(B_i\) are i.i.d Bernoullis in \({\{0,1\}}\).
Corollary: Gadget \(\tilde{G}\) is sound.
Transform UG instance \(\mathcal{I}\) on \({\mathbb{Z}}_k^n\) into max-cut instance \(\mathcal{G}\) on \(n\) blocks of \(2^k\) vertices. . . . (\(\mathcal{G}\) has many copies of \(\tilde{G}\) on pairs of blocks.)
Completeness: \(\Rightarrow\) If \(x\in\Sigma^n\) is “good” then \(E(x_1)\cdots E(x_n) \in {\{0,1\}}^{n2^d}\) “good” cut for most copies.
Soundness: \(\Rightarrow\) If \(\Psi:{\{0,1\}}^{n2^d}\rightarrow{\{0,1\}}\) is often “good” cut then can decode \(\Psi\) to “good” assignment \(x\).
(modulo ETH)
(modulo ETH)
(modulo ETH, UGC, and subexp algorithm)
Assuming the UGC (basic variants of) the SOS program is optimal for a great many approximation problems.
Finite obstruction for single algorithm \(\Rightarrow\) universal hardness result.
Is the UGC true? Big open question.
\(\epsilon \sim 0.01\) for non trivial results, reduction can’t output graphs smaller than \(\approx 2^{2^{10^4}}\) vertices.
Linear degree CSP integrality gaps for sos (Grigoriev’01,Schoenebeck’08,Tulsiani’09,B-Chan-Kothari’14,…)
NP hardness results for certain CSP’s (Håstad’95,…,Chan’13)
Interestingly, these almost match up.
Bigger open question: Tight (in approx value and running time) algorithms and NP hardness results for all CSP’s.
Conjecture: SOS Algorithm is (up to \(\pm \epsilon\)) optimal approx algorithm for all CSP’s.
UGC implies partial variant of this conjecture, could be true independently of UGC.