# Unique Games and Small Set Expansion

UCSD winter school on Sum-of-Squares, January 2017

# Subexponential time algorithms for Unique Games and Small Set Expansion

### Unique Games Problem

$$UG(\epsilon)$$ problem
Input: Set $${\mathcal{E}}$$ of $$m$$ eqs of form $$\{ x_i + x_j = c_{i,j} \mod k \}$$.
Goal: Distinguish between $$\max {\mathcal{E}}(x) \geq 1-\epsilon$$ and $$\max {\mathcal{E}}(x) \leq \epsilon$$

Unique Games Conjecture: (Khot’02) For every $$\epsilon$$, $$UG(\epsilon)$$ is NP hard.

(Can always choose $$k=\exp(1/\epsilon^2)$$)

For eq’s involving three variables, distinguishing $$1-o(1)$$ and $$1/k+o(1)$$ is exponentially NP hard (Hastad, Moshkovitz-Raz)

Thm: (Arora-B-S) Can solve $$UG(\epsilon)$$ in $$\exp(n^{O(\epsilon^{1/3})})$$ time.

### Intermediate complexity conjecture

Cor: If UGC is true, then there is a CSP $$P$$ and $$c \gt s$$ and $$\xi\in (0,1)$$ such that fastest alg to solve $$CSP(P)_{c \text{ vs } s}$$ is $$\exp(O(n^\xi ))$$. ### Small set expansion

Define $$G$$ on $$nk$$ vertices where $$(i,a) \sim (j,b)$$ iff $$a+b = c_{i,j}$$.

Recall $$f_G(x) = \tfrac{1}{E_G} \sum_{i\sim j} (x_i-x_j)^2$$

Identify $$x\in {\mathbb{Z}}_k$$ with $$\hat{x}$$ in $${\{0,1\}}^{nk}$$ ($$\hat{x}_{i,a}=1$$ iff $$x_i=a$$)

Claim: If $$x$$ satisfies $$(1-\epsilon)m$$ equations, then $$f_G(\hat{x}) \leq \epsilon \mu(\hat{x})$$.

(Def’n: $$\mu(x):={\| x \|}^2/n$$ ($$=|x|/n$$ if $$x\in{\{0,1\}}^n$$) )

### Small set expansion

$$SSE(\epsilon)$$ problem
Input: A graph $$G$$.
Goal: Distinguish between $$\varphi_G(1/k)\leq \epsilon$$ and $$\varphi_G(1/k) \geq 1-\epsilon$$
($$\varphi_G(\delta):=\max_{|S|\leq \delta n} f_G(1_S)/\mu(S)$$)

Natural graph problem, useful in analysis of Markov chains, etc.. etc

Small Set Expansion Hypothesis: (Raghavendra-S’12) For every $$\epsilon$$, $$SSE(\epsilon)$$ is NP hard.

Saw: Map $${\mathcal{E}}\leadsto G$$ s.t. $$\max_{x\in{\mathbb{Z}}_k} {\mathcal{E}}(x) \geq 1-\epsilon \Rightarrow \varphi_G(1/k) \leq \epsilon$$.

“Corollary”: UGC implies SSEH

Theorem: (Raghavendra-S’12) SSEH implies UGC

### Structure theorem

Thm: (Arora-B-S) Can solve $$SSE(\epsilon)$$ in $$\exp(n^{O(\epsilon)})$$ time.

Given graph $$G$$, define $$0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$ be eigenvalues of $$I-(1/d)A_G$$.

Cheeger’s Ineq: If $$\varphi_G(1/2) \geq \epsilon$$ then $$\lambda_2 \geq \Omega(\epsilon^2)$$.

Structure Thm: (Arora-B-S) If $$\varphi_G(\delta) \geq 0.1$$ then $$\lambda_{n^{O(\sqrt{\epsilon})}/\delta} \geq 1000\epsilon$$

### Structure Thm $$\Rightarrow$$ Algorithm

Given graph $$G$$, define $$0 = \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$ be eigenvalues of $$I-(1/d)A_G$$.

Cor: For $$m=n^{O(\sqrt{\epsilon})}$$, if $$\lambda_m \geq 1000\epsilon$$ then $$\varphi_G(\lambda) \leq 0.1$$.

Algorithm follows from following lemma:

Lemma: If $$x\in{\{0,1\}}^n$$ satisfies $$f_G(x)/|x| \leq \epsilon$$ and $$\lambda_m \geq 1000\epsilon$$, can find $$x^*$$ s.t. $$f_G(x^*) \leq 0.1\mu(x^*)$$ and $$\mu(x^*) \leq 2\mu(x)$$.

### Search over subspace

Proof: For every $$x$$, if $$\tilde{x}=x/{\| x \|} = \sum \alpha_i v_i$$ then $$f_G(x)/\mu(x)=\tfrac{1}{d{\| x \|}^2}\sum_{i \sim j} (x_i-x_j)^2 = \sum_i \alpha_i^2 \lambda_i$$.

So if $$f_G(x)/|x| \leq \epsilon$$ and $$\lambda_{m} \geq 100\epsilon$$ then $$\sum_{i\gt m} \alpha_i^2 \lt 0.001$$.

Projection of $$x$$ to $$Span\{ v_1,\ldots, v_m \}$$ has $$0.99{\| x \|}$$ norm.

$$\Rightarrow$$ $$\exp(O(m))$$ time algorithm to find it. ∎

### Soft Cheeger’s Thm

Recall

Cheeger’s Inequality: If $$f_G(x)\leq \epsilon {\| x \|}_2^2$$ then there is threshold $$S$$ cut of $$x$$ s.t. $$f_G(1_S) \leq O(\sqrt{\epsilon} \mu(S)$$.

Cor: If $$\mu(\{ i : x_i \gt 0 \}) \leq \delta$$ then set measure $$\leq \delta$$.

Soft Cheeger’s Inequality: (Dimitriou-Impagliazzo) If $${\| x \|}_1 \leq \sqrt{\delta n}{\| x \|}_2$$ then there is $$S$$ of measure at most $$O(\sqrt{\delta} n)$$ s.t. $$f_G(S) \leq O(\sqrt{\epsilon})\mu(S)$$.

Proof: Split $$x = x' + x''$$ where $$x'$$ “large” coords and $$x''$$ “small”.

$$x'_i = x_i$$ if $$|x_i| \gt {\| x \|}_2/(2\sqrt{n})$$, $$x'_i=0$$ otherwise.

$${\| x' \|}^2 \geq {\| x \|}^2/2$$ and $$f_G(x') \leq f_G(x) \leq \epsilon 2{\| x' \|}^2$$

But $$|\{ i : x'_i \neq 0 \}| \leq 2\sqrt{\delta} n$$

### Proof of structure thm

Reduces structure theorem to following:

Thm: If $$\lambda_{n^\beta} \lt \epsilon$$ then $$\exists$$ $$x$$ s.t. $$f_G(x) \leq O(\epsilon/\beta)\mu(x)$$ and $${\| x \|}_1 \leq {\| x \|}_2\sqrt{n^{1-\beta/2}}$$.

### Proof of main technical thm

Proof: Let $$\Pi$$ be projector to $$v_1,\ldots,v_{n^\beta}$$. $$Tr(\Pi) = n^\beta$$. Assume $$e_1^\top \Pi e_1 \geq n^{\beta-1}$$

$$w\in \Pi \color{red}{\Rightarrow} w^\top A_G w \geq (1-\epsilon){\| w \|}^2$$

$$v_t$$ := dist of $$t$$ step “lazy random walk” from $$1$$. ($$v_t = \left(\tfrac{1}{2}I+\tfrac{1}{2}A_G\right)^t e_i$$)

$${\| v_t \|}_2^2 \geq n^{\beta-1}(1-\epsilon)^t$$, $${\| v_t \|}_1=1$$

Find $$t \leq 0.1\beta \log n/\epsilon$$ s.t. $${\| v_t \|}/{\| v_{t-1} \|} \geq 1- O(\epsilon/\beta)$$

### SOS formulation of ABS

Thm: (Arora-B-S) Can solve $$SSE(\epsilon)$$ in $$\exp(n^{O(\epsilon)})$$ time.

Thm: (B-Raghavendra-S) Do so via $$n^{O(\epsilon)}$$ degree SOS.

Proof: By structure thm, every pseudo-dist (over unit vectors) will have $${\tilde{\mathbb{E}}}{\| \Pi x \|}^2 \geq 0.99$$.

use

Fix vector in subspace thm: If $$\mu$$ is degree $$O(d)$$ over unit vecs dimension $$d$$ subspace $$V$$ and $$w$$ random Gaussian in $$V$$, then $${\tilde{\mathbb{E}}}_{v\sim \mu} {\langle w,v \rangle}^{O(d)} vv^\top$$ has $$\sim$$ rank one.

### From SSE to UG

Expander partitioning lemma: (Leighton-Rao) By removing $$0.01$$ fraction of edges, can decompose every graph into disjoint collection of graphs with $$\lambda_2 \gt \Omega(1/\log^2 n)$$

Proof: Apply Cheeger recursively.

SSE partitioning lemma: (Arora-B-S) By removing $$0.01$$ fraction of edges, can decompose every graph into disjoint collection of graphs with $$\lambda_{n^{O(\epsilon^{1/3})}} \gt \Omega(\epsilon)$$

Proof: Apply structure theorem recursively.

Corollary: Enough to solve $$UG(\epsilon)$$ in $$\exp(O(m))$$ time for graphs where $$\lambda_m \geq 1000\epsilon$$.

Can be done via “fix vector in subspace thm”

### Can algorithms be improved?

Question: Suppose $$\varphi_G(\delta) \rightarrow 1$$ when $$\delta\rightarrow 0$$. What’s largest $$m$$ s.t. $$\lambda_m \lt 0.01$$?

Running time of algorithm is $$\exp(m)$$.

Example: Noisy cube: $$V_G = {\{0,1\}}^{\log n}$$, $$x \sim y$$ if $$\Delta(x,y) \leq 0.01\log n$$. $$\log n$$ eigenvalues of valuse $$0.01$$. If $$\mu(S) = 2^{-t}$$ then $$f_G(x) \geq (1-0.99^t)\mu(x)$$.

Short code graph: (B-Gopalan-Hastad-Meka-Raghavendra-S’11) $$V_G = \{ p:{\mathbb{F}}_2^\ell\to{\mathbb{F}}\;|\; \deg(p)\leq d \}$$. $$n=2^{\ell^d}$$. $$p \sim q$$ iff $$p-q=\alpha(x)^d$$. $$\ell = \exp((\log n)^{1/d})$$ eigenvalues of value $$1-2^{-d}$$ s.t. if $$\delta=o(1)$$ then $$\varphi_G(\delta)\geq 1-2^{-2^d}-o(1)$$.

Proof is obtained by reduction to testing of Reed Muller code (Bhattacharyya-Kopparty-Schoenebeck-Sudan-Zuckerman’10)

### The state of art

Short code: “Almost (sub)exponential” lower bound for ARV algorithm

SOS Strikes back: Degree $$16$$ SOS can certify SSE of the short code! (B-Brandao-Harrow-Kelner-Steurer-Zhou’12)

From quantum with love: Good enough algorithms for identifying entanglement could refute small set expansion, speed up ABS. (B-Brandao-Harrow-Kelner-Steurer-Zhou’12, B-Kothari-S’17)

### Latest updates

Revenge of the games: Candidate NP hardness for $$0.5$$ vs $$o(1)$$ unique games, “based” on degree two short code. (Dinur-Khot-Kindler-Minzer-Safra’16)

Informally/morally: “Inverse conjecture for short code”: if $$f_{SC}(1_S) \leq (1-\epsilon)\mu(S)$$, then $$S$$ is $$\Omega_\epsilon(1)$$ correlated with “simple” affine subspace of $${\mathbb{F}}_2^{n\times n}$$.

### Recap

Grand challenge: Characterize function $$\xi(P,s,c)$$ mapping predicate $$P$$ and $$c \gt s$$ to $$\xi$$ s.t. $$CSP(P)_{c \text{ vs } s}$$ is solveable in $$\exp(n^{\xi})$$.

$\xi(SAT,c,s) = \begin{cases} 1 & s \gt 7/8 \\ 0 & s \leq 7/8 \end{cases}$

(assuming ETH)

$\xi(UG,1-\epsilon,\epsilon) \lt O(\epsilon^{1/3})$

UGC: $$\xi(UG,1-\epsilon,\epsilon)\gt0$$

Raghavendra’s Thm: UGC implies for every predicate $$P$$, $$\xi(P,s,c)=0$$ iff degree $$2$$ SOS (+ lin constraints) solves $$CSP(P)_{c+o(1) \text{ vs } s-o(1)}$$.

Conjecture: $$\xi(P,s,c) \sim \log_n deg_SOS(CSP(P))_{c \text{ vs } s}$$ Opps, you cannot play draw N guess with this browser!